

Figure 1. ORTEP representation of $\mathbf{6 b}$.

(a)

(b)

Figure 2. (a) Alder-Stein transtion state for $\mathbf{4 a}+\mathbf{5}$ involving secondary orbital interactions between the ketone carbonyl carbon and the diene. (b) Alder-Stein transtion state for $\mathbf{4 a}+\mathbf{5}$ involving secondary orbital interactions between the aldehyde carbonyl carbon and the diene.

Figure 3. LUMO coefficients of $\mathbf{8}$, as determined by using MINDO-3 calculations.
upon whether the process is done thermally or under Lewis acid-catalyzed conditions. ${ }^{13.14}$ For the catalyzed process the observed diastereoselectivity presumably results from complexation of the hydroxyl group by SnCl_{4}, thereby transforming it into the larger of the two geminal substituents. This does not occur in the catalyzed reaction of 19 with 5 because complexation of the hydroxyl group with the Lewis acid is effectively prohibited by the adjacent methyl substituents.

The implications of these results are quite significant. Intermolecular Diels-Alder reactions involving cross-conjugaed dienones could in a single reaction produce up to five asymmetric centers with one relative stereochemistry (illustrated below for the general process $\mathbf{3}+\mathbf{2 4} \boldsymbol{\rightarrow 2 5}$). Moreover, it may be possible
(14) When compound 23 is allowed to react with PhSeCl , only products derived from simple addition to the unconjugated double bond are observed. For a discussion of these simple addition processes, see: Liotta, D.; Zima, G. Tetrahedron Lett. 1978, 4977.

in selected cases to employ dienones as "enone equivalents" for Diels-Alder reactions which fail because of unreactive enones. Further studies involving the synthetic and mechanistic implications of this work will be the subject of future reports.

Acknowledgment. This work was supported by a grant from the National Institutes of Health.

A Novel Synthesis of (\pm)-Cinnamodial

Lester P. J. Burton and James D. White*

Department of Chemistry, Oregon State University Corvallis, Oregon 97331
Received January 19, 1981
Cinnamodial (ugandensidial, 1) ${ }^{1}$ and warburganal (2), constituents of the genus Warburgia ugandensis (Canellaceae), ${ }^{2}$ have been shown to possess potent insect antifeedant activity against the African army worm (spodoptera species), ${ }^{3,4}$ as well as antimicrobial and molluscicidal properties. ${ }^{3}$ Current interest in these substances is evidenced by the fact that five syntheses of warburganal have been reported within the past 2 years, ${ }^{5}$ and, very recently, one of these ${ }^{5 c}$ has been extended to a synthesis of cinnamodial. ${ }^{6}$ We now wish to describe a total synthesis of (\pm)-1 which is different in concept from previous approaches to these sesquiterpene dialdehydes and which affords a convenient entry to related members of the drimane class, ${ }^{7}$ including isodrimenin (3).

3
$1, \mathrm{R}=\mathrm{OAc}$
2, $\mathrm{R}=\mathrm{H}$

The plan for introducing the ene-dialdehyde functionality of 1 was based on the assumption that a furan could serve as a latent 1,4-dialdehyde synthon, and the initial phase of the synthesis was therefore directed toward the tricyclic furan 10. The Diels-Alder adduct 4^{8} of 1 -vinyl-2,6,6-trimethylcyclohexene and dimethyl acetylenedicarboxylate was treated with borane-THF, and the

[^0]
resulting alkylborane was oxidized $\left(\mathrm{H}_{2} \mathrm{O}_{2}-\mathrm{NaOH}\right)^{9}$ to give a hydroxy diester in 75% yield. ${ }^{10}$ Contrary to an earlier assignment, ${ }^{5 \mathrm{bb}}$ this alcohol (5) was shown to possess a trans ring fusion. Thus, conversion of 5 to its mesylate 6 (2 equiv of $\mathrm{CH}_{3} \mathrm{SO}_{2} \mathrm{Cl}$, pyridine, room temperature, 4.5 h), followed by elimination with 1 equiv of 1,5 -diazabicyclo[5.4.0]undec-5-ene (DBU) in refluxing benzene (22 h), produced in high yield a $4: 1$ mixture of diene 7^{11} and its nonconjugated isomer, separable by chromatography on silica gel. Reduction of $7\left(\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 5 \mathrm{~h}\right)$ afforded lactone $8\left(80 \%\right.$; mp $102-104^{\circ} \mathrm{C}$), which was hydrogenated (10% $\mathrm{Pd}-\mathrm{C}, \mathrm{EtOAc}, 1 \mathrm{~h}$) to give quantitatively (\pm)-isodrimenin (3 ; mp $91-92^{\circ} \mathrm{C}$), identical by mmp, TLC behavior, and comparison of IR and NMR spectra with a sample of (\pm)-3 synthesized independently. ${ }^{12}$

With the configuration of 5 thus established, this diester was

reduced to triol $9\left[(i-\mathrm{Bu})_{2} \mathrm{AlH}\right.$, toluene, $-78{ }^{\circ} \mathrm{C}$ and then $0^{\circ} \mathrm{C}$ for 2 h], which was oxidized directly (pyridinium chlorochromate,

[^1]
(11) Assigned structures are fully supported by IR, NMR, and mass spectral measurements.
(12) H. Akita, T. Naito, and T. Oishi, Chem. Lett., 1365 (1979).
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, room temperature, 1 h) to the ketofuran 10 (68% yield from 5). The furan moiety of 10 underwent facile oxidation with lead tetraacetate (generated from $\mathrm{Pb}_{3} \mathrm{O}_{4}, \mathrm{HOAc}$, and $\mathrm{Ac}_{2} \mathrm{O}$) in benzene (room temperature, 2 h) to yield 90% of a mixture of epimeric diacetates $11 .{ }^{13}$ Brief treatment of 11 with DBU (1 equiv, THF, room temperature, 20 min) afforded the dienone 12 (70%), whereas more prolonged exposure of the diacetate to excess DBU furnished a substance (72%) identified as (\pm)-fragrolide (13). ${ }^{14}$

Installation of the 9α-hydroxyl group of 1 was envisaged through epoxidation of 12 , since it was expected that attack would occur preferentially at the more nucleophilic γ, δ unsaturation ${ }^{15}$ from the less hindered α direction. In fact, the reaction of $\mathbf{1 2}$ with m-chloroperbenzoic acid $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, anhydrous $\mathrm{Na}_{2} \mathrm{CO}_{3}$, room temperature, 1 h) yielded a product (76%), which was sufficiently stable to permit chromatographic purification and which, according to NMR evidence [$\delta 6.92(1 \mathrm{H}, \mathrm{d}, J=1.5 \mathrm{~Hz}$), 5.46 (1 $\mathrm{H}, \mathrm{s})$], was the desired epoxide 14. Exposure of 14 to methanol

containing a catalytic amount of p-toluenesulfonic acid (reflux, 10 h) gave the bis acetal 15 in 70% yield as a mixture of methoxy epimers, and, with the dialdehyde functionality now suitably protected, 15 was reduced $\left[(i-\mathrm{Bu})_{2} \mathrm{AlH}, \text { THF, }-5^{\circ} \mathrm{C}, 0.5 \mathrm{~h}\right)^{16}$ to diol 16 (90%). The 6β configuration of the newly formed alcohol is assigned on the presumption of a sterically controlled approach ${ }^{16}$ of the reductant to the α face of the keto group of 15 , and is supported by the NMR spectrum of 17 , in which the CHOH proton ($\delta 4.79$) is clearly cis ($J \simeq 6 \mathrm{~Hz}$) to the vicinal angular proton.

Brief treatment of 16 with $10 \% \mathrm{HCl}$ in acetone gave a single dialdehyde 17 in 92% yield. Although relatively hindered, the secondary alcohol of $\mathbf{1 7}$ could be acetylated with $\mathrm{Ac}_{2} \mathrm{O}$ in pyridine containing 4-(dimethylamino) pyridine ${ }^{17}$ (room temperature, 4 h) to give (\pm)-1 (81%), identical with a sample of racemic cinnamodial ${ }^{6}$ by comparison of TLC behavior and IR, NMR, and mass spectra. The synthesis of $\mathbf{1}$ by this route suggests that the furanoid strategy employed may be applicable to other antifeedants possessing similar functional group aggregations. ${ }^{2}$ Experiments designed to test the generality of this approach will be reported in due course.

Acknowledgment. We are indebted to Dr. Takeshi Oishi, Rikagaku Kenkyusho, Saitama, Japan, for samples and IR and

[^2]NMR spectra of (\pm)-isodrimenin and (\pm)-cinnamodial. Financial support was provided by the M. J. Murdock Charitable Trust.

Supplementary Material Available: IR, NMR, and mass spectral data for $\mathbf{1 , 3 , 5 - 8}$ and 10-15 (4 pages). Ordering information is given on any current masthead page.

A Monohydroxo Bridged, Strongly Antiferromagnetically Coupled Dicopper(II) Center in a Binucleating Macrocycle. Comparisons with Binuclear Copper Sites in Biology

Peter K. Coughlin and Stephen J. Lippard*

Department of Chemistry, Columbia University New York, New York 10027
Received February 20, 1981
Strongly antiferromagnetically coupled ($J \leq-500 \mathrm{~cm}^{-1}$) dicopper(II) centers exist in met- and oxyhemocyanin, laccase, and related copper proteins. ${ }^{1-3}$ The nature of the bridging ligand or ligands is unknown, although tyrosine or oxo oxygen atoms have been proposed. ${ }^{3}$ Here we report that the binucleating macrocycle A, previously used to coordinate the imidazolate (im) bridged dicopper(II) ion (Cu -Cu distance, $5.86 \AA$) ${ }^{4,5}$ readily incorporates

Macrocycles $\mathrm{A}(\mathrm{Y}=\mathrm{O}), \mathrm{A}^{\prime}\left(\mathrm{Y}=\mathrm{CH}_{2}\right)$
a monohydroxo bridged dicopper(II) center ($\mathrm{Cu}-\mathrm{Cu}$ distance, 3.64 \AA) that exhibits very strong antiferromagnetic coupling, $J \sim-500$ cm^{-1}. The large magnitude of the magnetic exchange interaction through a single bridging oxygen atom and the ability of the binucleating macrocycle to expand and contract to accommodate bridged binuclear copper(II) ions with variable metal-metal distances are features of likely relevance to binuclear copper centers in biology.

The compound was synthesized by dropwise addition of 2 mL of a 120 mM methanolic solution of $\mathrm{Cu}\left(\mathrm{ClO}_{4}\right)_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}$ to 4 mL of a stirred solution of the macrocycle ${ }^{4}$ dissolved to 30 mM concentration in methanol, followed by dropwise addition of 0.116 mL of 1 N NaOH to the resulting dark blue solution. After 2 min a dark blue microcrystalline precipitate formed, leaving an almost colorless supernatant. When 1 mL of water was added to this mixture, the solid completely redissolved. Vapor diffusion of chloroform into this solution gave the product in 57% yield as dark blue monoclinic prisms. Analytical, ${ }^{6}$ spectroscopic, ${ }^{6}$ and X-ray crystallographic ${ }^{7,8}$ data showed the composition to be.

[^3]

Figure 1. Structure of the $\left[\mathrm{Cu}_{2}(\mathrm{OH})\left(\mathrm{ClO}_{4}\right) \mathrm{CA}\right]^{2+}$ cation showing the 40% probability thermal ellipsoids. For clarity, only one of two positions is depicted for the disordered, bridging perchlorate group, the oxygen atoms of which are assigned arbitrarily as spheres of $0.3 \AA$ radius. Hydrogen atoms are omitted.

Table I. Selected Geometric Features of the $\left[\mathrm{Cu}_{2}(\mathrm{OH})\left(\mathrm{ClO}_{4}\right) \subset \mathrm{A}\right]^{2+}$ Cation a

distance, \AA	distance, \AA	angle, deg
$\mathrm{Cu} 1-\mathrm{O} 11.920$	Cu2-01 1.912	Cu1-O1-Cu2 143.7
Cu1-N1 2.055	Cu2-N13 2.056	O1-Cu1-N4 171.7
Cu1-N4 1.995	Cu2-N16 1.988	O1-Cu2-N16 170.6
Cul-N7 2.040	Cu2-N19 2.053	N1-Cu1-N7 158.2
Cu1-O1A 2.606	Cu2-O1B 2.594	N13-Cu2-N19 160.5
$\mathrm{Cu} 1-\mathrm{Cu} 23.642$		
Possible Hydrogen Bonding		
distance, A	angle, deg	angle, deg
O1-O10 3.025	O1-O10-C9 82.6	O1-O22-C21 85.21
O1-O22 2.962	O1-O10-C11 84.3	O1-O22-C23 84.8

Best Planes Calculations
through O1, N1, N4, N7 through O1, N13, N16, N19 dev from plane, \AA dev from plane, \AA

O1	-0.22	O1	-0.21
N1	+0.24	N13	+0.22
N4	-0.26	N16	-0.24
N7	+0.24	N19	+0.22
Cu1	-0.09	Cu2	-0.06

${ }^{a}$ Atoms are labeled as in Figure 1. Standard deviations in bond lengths are less than $0.02 \AA$ and in interbond angles are less than 0.2°.
$\left[\mathrm{Cu}_{2}(\mathrm{OH})\left(\mathrm{ClO}_{4}\right) \subset \mathrm{A}\right]\left(\mathrm{ClO}_{4}\right)_{2} \cdot \mathrm{CHCl}_{3}$.
The structure of the $\left[\mathrm{Cu}_{2}(\mathrm{OH})\left(\mathrm{ClO}_{4}\right) \subset A\right]^{2+}$ cation is shown in Figure 1. Two copper atoms are coordinated to the two diethylenetriamine poles of the macrocycle as found previously 4,5 for $\left[\mathrm{Cu}_{2}(\mathrm{im})(\mathrm{imH})_{2} \subset \mathrm{~A}\right]^{3+}$ and $\left[\mathrm{Cu}_{2}(\mathrm{im})(\mathrm{MeIm})_{2} \subset \mathrm{~A}^{\prime}\right]^{3+}$. A single hydroxide ion bridges the two metal centers at $D_{2 d}$ distorted square-planar coordination sites. The resulting $\mathrm{Cu}-\mathrm{O}$ bonds (av, $1.916 \AA$) and the $\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}$ angle of 143.7 (2) ${ }^{\circ}$ may be compared with $\mathrm{Cu}-\mathrm{O}$ distances of $1.90-1.93 \AA$ and $\mathrm{Cu}-\mathrm{O}-\mathrm{Cu}$ angles of $96-104^{\circ}$ observed in di- μ-hydroxo bridged dicopper(II) complexes ${ }^{9}$ and corresponding values of 1.930 (5) \AA and 141.6 (3) ${ }^{\circ}$ for another structurally well-characterized monohydroxo bridged dicopper(II)
(7) The compound crystallizes in the space group $P 2_{1} / c$ with four formulas in a unit cell of dimensions $a=14.487$ (2), $b=15.282$ (2), $c=15.573$ (2) $\AA ; \beta=91.79(1)^{\circ} ; \rho_{\text {calcd }}=1.751, \rho_{\text {obsd }}=1.754(2) \mathrm{g} \mathrm{cm}^{-3}$. The copper atom positional parameters were determined by direct methods and the other atoms were located on difference Fourier maps. When 4305 unique reflections [3° $\left.\leq 2 \theta \leq 50^{\circ}, F_{0}>4 \sigma\left(F_{\mathrm{o}}\right)\right]$ collected at 26° by diffractometer using Mo $\mathrm{K} \alpha$ radiation were used, the structure was refined to a current value of 0.054 for the discrepancy index $R_{1}=\sum| | F_{\mathrm{o}}\left|-\left|F_{\mathrm{d}}\right| / / \sum\right| F_{\mathrm{o}} \mid$. Full details, including the best model used to fit two disordered perchlorate anions, will be reported at a later date.
(8) Supplementary material.
(9) (a) Hodgson, D. J. Progr. Inorg. Chem. 1975, 19, 173-241. Crawford, V. H.; Richardson, H. W.; Wasson, J. R.; Hodgson, D. J.; Hatfield, W. E. Inorg. Chem. 1976, 15, 2107-2110.

[^0]: (1) C. J. W. Brooks and G. H. Draffan, Tetrahedron, 25, 2887 (1969).
 (2) I. Kubo, Y.-W. Lee, M. Pettei, F. Pilkiewicz, and K. Nakanishi, J. Chem. Soc., Chem. Commun., 1013 (1976); see also I. Kubo, I. Miura, M. J. Pettei, Y.-W. Lee, F. Pilkiewicz, and K. Nakanishi, Tetrahedon Lett., 4553 (1977).
 (3) K. Nakanishi and I. Kubo, Isr. J. Chem., 16, 28 (1977).
 (4) W. C. Ma and I. Kubo, Entomol. Exp. Appl., 22, 107 (1977).
 (5) (a) A. Ohsuka and A. Matsukawa, Chem. Lett., 635 (1979); (b) S. P. Tanis and K. Nakanishi, J. Am. Chem. Soc., 101, 4398 (1979); (c) T. Nakata, H. Akita, T. Naito, and T. Oishi, J. Am. Chem. Soc., 101, 4400 (1979); (d) A. S. Kende and T. J. Blacklock, Tetrahedron Lett., 3119 (1980); (e) D. J. Goldsmith and H. S. Kezar, ibid., 3543 (1980).
 (6) T. Naito, T. Nakata, H. Akita, and T. Oishi, Chem. Lett., 445 (1980).
 (7) C. H. Heathcock in "The Total Synthesis of Natural Products", Vol.

 2, J. W. ApSimon, Ed., Wiley-Interscience, New York, 1973, pp 338-353. (8) J. C. Loperfido, J. Org. Chem., 38, 399 (1973).

[^1]: (9) H. C. Brown and R. M. Gallivan, J. Am. Chem. Soc., 90, 2906 (1968).
 (10) A second alcohol, with spectral properties consistent with a cis fused structure (i), was isolated in ca. 5% yield.

[^2]: (13) N. Elming in "Advances in Organic Chemistry: Methods and Results", Vol. 2, R. A. Raphael, E. C. Taylor, and H. Wynberg, Eds., Interscience, New York, 1960, p 67.
 (14) L. Canonica, A. Corbella, P. Garibaldi, G. Jommi, J. Krepinsky, G. Ferrari, and C. Casagrande, Tetrahedron, 25, 3903 (1969). It was found that 12 can also be converted to fragrolide (13) under these conditions. The acetoxyfuran, derived by isomerization of the double bond in 12, is a putative intermediate.
 (15) Y. Fukuyama, C. L. Kirkemo, and J. D. White, J. Am. Chem. Soc., 99, 646 (1977).
 (16) K. E. Wilson, R. T. Seidner, and S. Masamune, J. Chem. Soc., Chem. Commun., 213 (1970).
 (17) A. Hassner and L. R. Krepski, Tetrahedron, 34, 2096 (1978).

[^3]: (1) Dooley, D. M.; Scott, R. A.; Ellinghaus, J.; Solomon, E. I.; Gray, H. B. Proc. Natl. Acad. Sci. U.S.A. 1978, 75, 3019-3022.
 (2) (a) Malkin, R.; Malmström, B. G. Adv. Enzymol. 1980, 33, 177-244. (b) Fee, J. A. Struct. Bonding (Berlin) 1975, 23, 1-60. (c) Williams, R. J. P. In "Structure and Function of Hemocyanin"; Bannister, J. V., Ed.; Springer Verlag: Heidelberg, 1977.
 (3) For recent reviews, see: (a) Beinert, H. Coord. Chem. Rev. 1980, 33, 55-85. (b) Solomon, E. I. In "Metal Ions in Biology"; Spiro, T. G., Ed.; Wiley-Interscience: New York, in press.
 (4) Coughlin, P. K.; Dewan, J. C.; Lippard, S. J.; Watanabe, E.-i.; Lehn, J.-M. J. Am. Chem. Soc. 1979, 101, 265-266.
 (5) Coughlin, P. K.; Lippard, S. J.; Martin, A. E.; Bulkowski, J. E. J. Am. Chem. Soc. 1980, 102, 7616-7617.
 (6) Elemental analysis. Anal. Caled for $\mathrm{Cu}_{2} \mathrm{C}_{17} \mathrm{H}_{40} \mathrm{~N}_{6} \mathrm{O}_{15} \mathrm{Cl}_{6}: \mathrm{C}, 22.48$; $\mathrm{H}, 4.44$; N, 9.25 ; $\mathrm{Cl}, 23.42$. Found: $\mathrm{C}, 22.68 ; \mathrm{H}, 4.62 ; \mathrm{N}, 9.39 ; \mathrm{Cl}, 24.15$. Infrared spectrum (Nujol mull) $\mathrm{N}-\mathrm{H}$ stretches, $3288,3264 \mathrm{~cm}^{-1} ; \mathrm{O}-\mathrm{H}$ stretch, $3472 \mathrm{~cm}^{-1}$. The assignment of this band to the $\mathrm{O}-\mathrm{H}$ stretching mode is supported by its absence in $\left[\mathrm{Cu}_{2}(\mathrm{im})(\mathrm{imH})_{2} \mathrm{CA}\right]\left(\mathrm{ClO}_{4}\right)_{3}{ }^{4}$ Optical spectrum (aqueous solution) $\lambda_{\max }\left(\epsilon, \mathrm{M}^{-1} \mathrm{~cm}^{-1}\right): 637(240), 330(1800, \mathrm{sh}), 265$ (9300) nm.

